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Abstract: Let p ∈ (1,∞), ϕ ∈ Lp(R) and ε < E be given nonnegative constants. In this paper we
prove stability estimates of Hölder type for the Cauchy problem

uxx + a(y)uyy + b(y)uy + c(y)u = 0, −∞ < x < ∞, 0 < y < 1,

‖u(·, 0)− ϕ‖p ≤ ε,

uy(x, 0) = 0, −∞ < x < ∞.

subject to the constrain ‖u(·, 1)‖p ≤ E. Furthermore, we suggest a marching difference scheme for solving
the problem in a stable way.

1. INTRODUCTION
Let p ∈ (1,∞), ϕ ∈ Lp(R) and ε,M be given constants such that 0 ≤ ε < M < ∞. In this paper we
consider the Cauchy problem

uxx + a(y)uyy + b(y)uy + c(y)u = 0, −∞ < x < ∞, 0 < y < 1, (1)
‖u(·, 0)− ϕ‖p ≤ ε, (2)
uy(x, 0) = 0, −∞ < x < ∞, (3)

subject to the constraint
‖u(·, 1)‖p ≤ E. (4)

Here a, b, c are given functions such that for some given positive constants λ ≤ A

λ ≤ a(y) ≤ A, y ∈ [0, 1] (5)

a(y) ∈ C2[0, 1], b(y) ∈ C1[0, 1], c(y) ∈ C[0, 1], c(y) ≤ 0. (6)

Without loss of generality in the following we suppose that λ ≥ 1.

We note that the problem with the non-homogeneous right-hand side in (1) and the second Cauchy
data in (3) can be transformed to the above problem via an auxiliary well-posed boundary problem.
When ε = 0 we shall prove that a solution of (1)–(3) (see Definition below) exists if and only if ϕ is
infinitely differentiable and

∥∥ϕ(n)
∥∥

Lp(R)
≤ cn!sn, ∀n ∈ N for some nonnegative constants c and s. The

Cauchy problem (1)-(3) is well-known to be ill posed: a small perturbation in the Cauchy data may cause
a very large error in the solution (see, e.g. [5, 8, 9, 11]). It is therefore difficult to develop numerical
methods for the problem, since we always have errors of measurement in the Cauchy data, discretization
errors and round-off errors; all of these make numerical solutions unstable. To overcome this difficulty
we shall apply the mollification method of [3] in order to solve the problem (1)-(3) in a stable way and
prove some stability estimates of Hölder type for the solution and its derivatives. The idea of the method
is as follows: we mollify the Cauchy data ϕ by the convolution with the de la Vallée Poussin kernel (with
the Dirichlet kernel for p = 2). The mollified data belong to the space of band-limited functions, in
which the Cauchy problem is well-posed. And with appropriate choices of mollification parameters we
obtain errors estimates of Hölder type. Further, since the Fourier transform of band-limited functions
has compact support, the method can be easily implemented numerically using the fast Fourier transform
(FFT) technique. Based on this remark we suggest in Section 6 a stable marching difference scheme for
(1)-(3). This paper is organized as follows. In Section 2 we outline some results on the Cauchy problem
in frequency space. Section 3 is devoted to stability estimates for the L2 case and Sections 4 and 5 for
the Lp(1 < p ≤ ∞) cases. Finally, a stable marching difference scheme in the Lp-norm for (1)-(3) is
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presented in Section 6. We separately analyze the L2 and the general Lp cases since the techniques for
them are totally different. Furthermore, the L2 case is much easier and for which we get much more
sharp estimates than for the general Lp ones. We note that stability estimates in the Lp-norm of Hölder
type for ill-posed problems are not so developed. Furthermore, stable marching difference schemes in the
Lp-norm are quite interesting not only for ill-posed problems but also for well-posed ones. This paper is
a further development of [4] and also supplies some corrections to it.

In this paper we shall make use of the following notation: Mν,p (1 ≤ p ≤ ∞) will denote the collection
of all entire functions of exponential type ν which as functions of a real x ∈ R lie in Lp = Lp(R) ([14,
p. 100]). We shall denote by Eν,p(f) the best approximation of f using elements of Mν,p ([14, p. 184])
Eν,p(f) = inf

g∈Mν,p
‖f−g‖Lp(R). The norm in Lp will be denoted by ‖ ·‖p. For a function f ∈ L1(R), its

Fourier transform is defined by F [f ](ξ) = f̂(ξ) = 1/
√

2π
∞∫
−∞

f(x)e−ixξdx. The inverse Fourier transform

is denoted by F−1. In the paper c1, c2, . . . are generic positive constants.

2. AUXILIARY RESULTS
Consider the Cauchy problem in frequency space

− z2v(z, y) + a(y)vyy(z, y) + b(y)vy(z, y) + c(y)v(z, y) = 0, 0 < y < 1, z ∈ C, (7)
v(z, 0) = 1, z ∈ C, (8)
vy(z, 0) = 0, z ∈ C. (9)

Since the properties of v(z, y) play an essential role in obtaining stability results for the Cauchy problem
(1)-(3), we study them carefully and then derive some direct consequences.

Lemma 1. There exists a unique solution of (7)-(8) such that

i) v(z, ·) ∈ W 2,∞(0, 1), ∀z ∈ C,

ii) v(z, y) is an entire function of z for every y ∈ [0, 1],

iii) v(z, 1) 6= 0, ∀z 6= ci, c ∈ R, i =
√−1,

iv) there exist constants c1, c2, c3 and c4 such that for z ∈ R
|v(z, y)| ≤ c1e

|z|A(y), ∀y ∈ [0, 1], (10)

|v(z, 1)| ≥ c2e
|z|A(1), (11)

and if |z| ≥ z0 > 0, then ∀y ∈ [0, 1],

|vy(z, y)| ≤ c3|z|e|z|A(y) and |vyy(z, y)| ≤ c4|z|2e|z|A(y).

Here A(y) :=
∫ y

0
ds√
a(s)

, y ∈ [0, 1].

We use the technique of Knabner and Vessella [10] with some modifications to prove this lemma.

Lemma 2. Let k(z, y) be the solution of the boundary value problem

a(y)kyy(z, y) + b(y)ky(z, y) + c(y)k(z, y) = z2k(z, y), 0 < y < 1, z ∈ C, (12)
ky(z, 0) = 0, z ∈ C, (13)
k(z, 1) = 1, z ∈ C. (14)

Then, there exists a constant c5 such that

|k(z, y)|, |kz(z, y)|, |kzz(z, t)| ≤ c5e
(A(y)−A(1))|z| (15)

and for any α ∈ (0, 1),
|z||kz(z, y)| ≤ c5

1− α
eα(A(y)−A(1))|z|. (16)

To prove these results we use lemma 1 and [6,7].
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Proposition 1. Let p ∈ (1,∞) and the function ψ ∈ Lp(R). Consider the boundary value problem

uxx + a(y)uyy + b(y)uy + c(y)u = 0, −∞ < x < ∞, 0 < y < 1, (17)
uy(x, 0) = 0, −∞ < x < ∞, (18)
u(x, 1) = ψ(x), −∞ < x < ∞. (19)

Then for any fixed y ∈ [0, 1), the solution u(x, y) is analytic in the variable x and it can be analytically
extended in the strip R×i(−σ(y), σ(y)) of the complex plane C with σ(y) ∈ (0, A(1)−A(y)). Furthermore,
there is a constant c6 such that

‖u(· ± iσ(y), y)‖p ≤ c6
A(1)−A(y)

A(1)−A(y)− σ(y)
‖ψ‖p. (20)

The proof of this proposition is based on lemmas 1, 2 and the following result of Mikhlin [13] (see also
[14, chapter 1]): Denote by Rn

∗ = Rn\{0}. Let k ∈ Cn(Rn
∗ ). If for a multi-index α there is a constant c

such that
|ξ||α||Dαk(ξ)| ≤ c, ξ ∈ Rn

∗ , |α| ≤ n,

then the mapping ψ 7→ F−1kFψ is continuous in Lp(Rn) and there is a constant K(n, p) such that

‖F−1[kFψ]‖Lp(Rn) ≤ K(n, p)c‖ψ‖Lp(Rn), ∀ψ ∈ Lp(Rn).

Proposition 2. Let u(x, y) be defined as in Proposition 1. Then there is a constant c7 such that

Eν,p(u(·, y)) ≤ c7
A(1)−A(y)

A(1)−A(y)− σ(y)
‖ψ‖pe

−σ(y)ν .

In particular, if we take σ(y) = α(A(1)−A(y)) with arbitrary α ∈ (0, 1), then

Eν,p(u(·, y)) ≤ c7
1

1− α
‖ψ‖pe

−α(A(1)−A(y))ν .

To prove this proposition we need the following remarkable result of Bernstein (see [1,15]).

Lemma 3. For σ > 0, let f(x + iy) be analytic in the strip R × i(−σ, σ) and real valued for y = 0. If
there is a constant m such that ‖Re f(· ± iσ)‖p ≤ m, 1 ≤ p ≤ ∞, then we have

Eν,p(f(·)) ≤ c8me−σν .

Here, c8 is a defined constant.

The statement of Proposition 2 follows now from this lemma and Proposition 1.

Proposition 3. Let u(x, y) be defined as in Proposition 1. Then there is a constant c9 such that with
arbitrary α ∈ (0, 1) the following inequalities hold for n = 1, 2, . . .

Eν,p

(
∂n

∂xn
u(·, y)

)
≤ c9

(n + 1)!
(1− α)n+1(A(1)−A(y))n+1

‖ψ‖pe
−α(A(1)−A(y))ν .

To deal with the case p = ∞ we need the following result.

Lemma 4. For any y ∈ [0, 1), the function

F−1[k](x± iσ(y), y) =
1√
2π

∫ ∞

−∞
k(ξ, y)ei(x±iσ(y))ξdξ

is well defined for all σ(y) ∈ [0, A(1)−A(y)). It is analytic with respect to the variable z = x+iσ(y) in the
strip R× i(A(y)−A(1), A(1)−A(y)) of the complex plane C. Furthermore, F−1[k](· ± iσ(y), y) ∈ L1(R)
and

‖F−1[k](· ± iσ(y))‖1 ≤ c9

A(1)−A(y)− σ(y)
(21)

H03
3



Lemma 5. Let u(x, y) be the solution of the boundary value problem (17)-(19) with ψ ∈ L∞(R). Let
further that y ∈ [0, 1) and |σ| < A(1)−A(y). Then, there is a constant c10 such that, for any α ∈ (0, 1),

Eν,p(u(·, y)) ≤ c10

(1− α)(A(1)−A(y))
e−α(A(1)−A(y))ν‖ψ‖∞.

Using the results in this section we can prove the following results in §3-5 on stability estimates.

2. L2−CASE
2.1. Solvability
Definition 2.1. We say that u(x, y) is an L2-solution of (1)-(4) if for any y0 ∈ (0, 1], u(·, y0) ∈ L2(R)
and u satisfies (1)-(4).

When ε = 0, if in the problem (1)-(3), u(·, y) ∈ L2(R) exists for y < 1, we say that the solution is
local.

Theorem 1. If there exists an L2-solution of (1)–(4), then u(x, 0) is infinitely differentiable and there
exist some constants c and s such that

‖u(k)(x, 0)‖2 ≤ ck!sk, ∀k = 0, 1, 2, . . . (22)

Conversely, if a function ϕ satisfies (22), then there exists a local L2-solution of the system

uxx + a(y)uyy + b(y)uy + c(y)u = 0, −∞ < x < ∞, 0 < y < 1,

‖u(·, 0)− ϕ‖2 = 0,

uy(x, 0) = 0, −∞ < x < ∞.

2.2. Mollification method
To solve (1)–(4) in a stable way we mollify ϕ by the convolution with the Dirichlet kernel

ϕ → ϕν(x) =
1√
2π

∞∫

−∞
ϕ(x)

sin ν(x− η)
x− η

dη (23)

for some positive ν, and instead of considering (1)–(3) with ϕ we look for its mollified version

uν
xx + a(y)uν

yy + b(y)uν
y + c(y)uν = 0, −∞ < x < ∞, 0 < y < 1, (24)

uν(x, 0) = ϕν(x), −∞ < x < ∞, (25)
uν

y(x, 0) = 0, −∞ < x < ∞. (26)

Theorem 2. For any fixed ν > 0 the problem (24)–(26) is solvable and its solution is stable

∥∥∥∂muν(·, y)
∂xm

∥∥∥ ≤ c1ν
meνA(y)‖ϕ‖, 0 ≤ y ≤ 1, m = 0, 1, 2, . . . (27)

Furthermore, for ε small enough, with

ν = ν∗ =
1

A(1)
ln

E

ε
(28)

for y ∈ (0, 1) we have

‖u(·, y)− uν∗(·, y)‖ ≤ c1

(
1 +

1
c2

)
ε

A(y)
A(1) E1−A(y)

A(1) (29)

and

∥∥∥∂mu(·, y)
∂xm

− ∂muν∗(·, y)
∂xm

∥∥∥ ≤ c1

(
1 +

1
c2

( m

A(1)−A(y)
)m

)( 1
A(1)

ln
E

ε

)m

ε
A(y)
A(1) E1−A(y)

A(1) , m = 1, 2, ...

(30)
Here, u(x, y) is a solution of (1)–(4) and uν∗(x, y) is the solution of (24)–(26) with ν = ν∗.
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2.3. Stability estimates
From theorem 2 and the triangle inequality we immediately obtain the following result.

Theorem 3. Let u1(x, y), u2(x, y) be any solutions of the problem (1)-(4). Then,

‖u1(·, y)− u2(·, y)‖ ≤ 2c1

(
1 +

1
c2

)
ε

A(y)
A(1) E1−A(y)

A(1) (31)

and, for m = 1, 2, ...,
∥∥∥∂mu1(·, y)

∂xm
− ∂mu2(·, y)

∂xm

∥∥∥ ≤ 2c1

(
1 +

1
c2

( m

A(1)−A(y)
)m

)( 1
A(1)

ln
E

ε

)m

ε
A(y)
A(1) E1−A(y)

A(1) . (32)

In the case of Laplace’s equation we can also obtain stability estimates for derivatives of u with respect
to y.

Theorem 4. Let u1(x, y), u2(x, y) be L2-solutions of the Cauchy problem for Laplace’s equation

uxx + uyy = 0, −∞ < x < ∞, 0 < y < 1,

‖u(·, 0)− ϕ‖2 ≤ ε, −∞ < x < ∞,

uy(x, 0) = 0, −∞ < x < ∞,

with ϕ ∈ L2(R), ‖u(·, 1)‖2 ≤ E and ε ≤ E. Then for any m = 0, 1, 2, . . . , ` = 0, 1, 2, . . . m + ` ≥ 1,
y ∈ [0, 1), we have

∥∥∥∂m+`u1(·, y)
∂xm∂y`

− ∂m+`u2(·, y)
∂xm∂y`

∥∥∥ ≤ 2
(

ln
(
e
E

ε

))m+`(
ey + 2

(m + `

1− y

)m+`
)
ε1−yEy.

4. Lp(1 < p < ∞) CASE

Theorem 5. For y ∈ [0, 1), a solution u(x, y) of the problem (1)–(4) is analytic with respect to the
variable x. Further, for any α ∈ (0, 1− y),

∥∥∥∂nu(·, y)
∂xn

∥∥∥
p
≤ c2

(n + 1)!
(1− α)n+1(A(1)−A(y))n+1

E, n = 0, 1, 2, . . .

In particular, when y = 0, for any α ∈ (0, 1),

∥∥∂nu(·, 0)
∂xn

∥∥
p
≤ c2

(n + 1)!
(1− α)n+1A(1)n+1

E. (33)

Conversely, if ϕ̄ = u(x, 0) satisfies (33), then there is a local solution in Lp of the Cauchy problem

uxx + a(y)uyy + b(y)uy + c(y)u = 0, −∞ < x < ∞, 0 < y < 1,

u(x, 0) = ϕ̄(x), −∞ < x < ∞,

uy(x, 0) = 0, −∞ < x < ∞.

Now we return to the “generalized” Cauchy problem (1)–(4). We shall prove some stability estimates
for this problem by the mollification method of [3].

Denote the de la Vallée Poussin kernel [14, p. 304] by

kν(x) =
1
πν

cos(νx)− cos(2νx)
ν2

, ν > 0.

This kernel belongs to M2ν,1 and has many nice properties. In particular, the convolution of a function
ϕ ∈ Lp(R) with this kernel belongs to M2ν,p ([14, p. 304–306])

ϕν(x) :=

∞∫

−∞
kν(x− z)ϕ(z)dz ∈ M2ν,p.
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Now we mollify ϕ by the convolution with the de la Vallée Poussin kernel and consider the mollified
Cauchy problem

uν
xx + a(y)uν

yy + b(y)uν
y + c(y)uν = 0, −∞ < x < ∞, 0 < y < 1, (34)

uν(x, 0) = ϕν(x), −∞ < x < ∞, (35)
uν

y(x, 0) = 0, −∞ < x < ∞. (36)

Theorem 6. There exists a unique solution of the mollified Cauchy problem (34)–(36). For any y > 0,
uν(·, y) ∈ M2ν,p and for any y finite it is stable in the Lp-norm. Further, for any α ∈ (0, 1) and y ∈ [0, 1],
with

ν = ν(y) =
1

2A(y) + α(A(1)−A(y))
ln

E

ε

we have

‖uν(·, y)− u(·, y)‖p ≤
(

2
√

3c1 + (1 + 2
√

3)
c7

1− α

)
E

2A(y)
2A(y)+α(A(1)−A(y)) ε

1− 2A(y)
2A(y)+α(A(1)−A(y)) . (37)

Proof. We note that ln
E

ε
> 0, since ε < E. Therefore ν(y) > 0, and so the choice for ν is acceptable.

Since ϕν ∈ M2ν,p and the function v(z, y) is analytic in z, the existence and uniqueness of a solution
uν(·, y) ∈ M2ν,p for any y > 0 is guaranteed by a general theory on the Cauchy problems ([16]).

From lemmas 1, 2, the Bernstein-Nikolskii inequality1 for the functions in M2ν,p, and Gronwall’s
inequality, we get

‖uν(·, y)‖p ≤ c1e
2νA(y)‖ϕν‖p. (38)

Here, c1 is the same constant as in proposition 1. Thus, uν is stable in the Lp-norm for fixed ν > 0.

To estimate ‖uν − u‖p we use u(x, y) = v(·, y) ∗ u(·, 1) and set ϕ(x) := u(x, 0) = F−1[k](·, 0) ∗ u(·, 1).

Then ϕ ∈ Lp(R) and ‖ϕ− ϕ‖p ≤ ε. The Cauchy problem

uν
xx + a(y)uν

yy + b(y)uν
y + c(y)uν = 0, −∞ < x < ∞, 0 < y < 1,

uν(x, 0) = ϕν(x), −∞ < x < ∞,

u,ν
y (x, 0) = 0, −∞ < x < ∞

with ϕν being the convolution of ϕ with kν has a unique solution in M2ν,p. In virtue of Bernstein-
Nikolskii’s inequality and the properties of the de la Valée Poussin kernel,

∥∥uν(·, y)− uν(·, y)
∥∥

p
≤ 2

√
3c1e

2A(y)νε.

On the other hand, we can prove that uν(x, y) = kν(·) ∗ u(·, y). Consequently, by the property of the de
la Vallée Poussin kernel and Lemma 2,

‖uν(·, y)− u(·, y)‖p ≤ (1 + 2
√

3)
c7

1− α
Ee−α(1−A(y))ν

for y ∈ [0, 1) and α ∈ (0, 1).

Finally, for y ∈ [0, 1) and α ∈ (0, 1),

‖uν(·, y)− u(·, y)‖p ≤ ‖uν(·, y)− uν(·, y)‖p + ‖uν(·, y)− u(·, y)‖p

≤ 2
√

3c1e
2A(y)νε + (1 + 2

√
3)

c7

1− α
Ee−α(A(1)−A(y))ν .

The inequality (37) for y ∈ [0, 1) now follows directly from this estimate. The case y = 1 is trivial.

The following result is an immediate corollary of the previous theorem and the triangle inequality.

1Bernstein-Nikolskii’s inequality says that if a function f belongs to Mνp, then ‖f (n)‖p ≤ νn‖f‖p,∀n = 1, 2, . . . . ([14,
p. 116])
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Theorem 7. Let u1 and u2 be any solutions of (1)–(4). Then, for any α ∈ (0, 1) and y ∈ [0, 1],

‖u1(·, y)− u2(·, y)‖p ≤ 2
(

2
√

3c1 + (1 + 2
√

3)
c7

1− α

)
E

2A(y)
2A(y)+α(A(1)−A(y)) ε

1− 2A(y)
2A(y)+α(A(1)−A(y)) .

Remark 1. If in Theorem 6 we take ν independent of y, say

ν = ν∗ =
1

2A(1)
ln

E

ε
, (39)

then we have a slightly weaker estimate

‖uε,ν∗(·, y)− u(·, y)‖p ≤ 2
√

3c1E
A(y)/A(1) · ε1−A(y)/A(1)

+ (1 + 2
√

3)
c7

1− α
E1−α(A(1)−A(y))/2A(1)εα(A(1)−A(y))/2A(1).

However, this choice is convenient for numerical implementations.

Remark 2. To have stability estimates at y = 1 we have to impose some more regularity conditions on
u(x, 1) (see [4]).

Theorem 8. Let u1 and u2 be any solutions of (1)–(4). Then, for any α ∈ (0, 1), y ∈ [0, 1), n = 0, 1, 2, . . .,
there is a constant c11 such that

∥∥∥∥
∂n

∂xn
u1(·, y)− ∂n

∂xn
u2(·, y)

∥∥∥∥
p

≤ c11

(
1

A(1)n

(
ln

E

ε

)n

E
A(y)
A(1) ε1−A(y)

A(1)

+
(n + 1)!

(1− α)n+1(A(1)−A(y))n+1
E1−α

A(1)−A(y)
2A(1) εα

A(1)−A(y)
2A(1)

)
.

For the Laplace equation we can get also stability estimates for the derivatives with respect to x and
y.

5. L∞ CASE
Proceeding as in the previous section, from lemma 5, for any α ∈ (0, 1), we have

‖uν(·, y)− u(·, y)‖∞ ≤ c1e
2νA(y) +

c10

(1− α)(A(1)−A(x))
e−α(A(1)−A(y))νE.

Thus, if we choose

ν =
1

αA(1) + (2− α)A(y)
ln

E

ε
,

then

‖uν(·, y)− u(·, y)‖∞ ≤
(

c1 +
c10

(1− α)(A(1)−A(x))

)
E

2A(y)
αA(1)+(2−α)A(y) ε1− 2A(y)

αA(1)+(2−α)A(y) .

Hence for any solutions u1(x, y), u2(x, y) of (1)–(4) with p = ∞ we have the stability estimate

‖u1(·, y)− u2(·, y)‖∞ ≤ 2
(

c1 +
c10

(1− α)(A(1)−A(x))

)
E

2A(y)
αA(1)+(2−α)A(y) ε1− 2A(y)

αA(1)+(2−α)A(y) .

Although for any fixed y ∈ [0, 1) this estimate is of Hölder type, it blows up when y tends to 1. Thus,
the estimate in the L∞-case is unfortunately local. However, remark 2 is still valid for this case.

6. STABLE MARCHING DIFFERENCE SCHEME
Since the symbol v(ξ, y) is not always found exactly, it makes the mollification method sometimes not
directly applicable. In this section we suggest a stable marching difference scheme based on the mollifi-
cation method for the Cauchy problem (1)–(4) with noisy data ϕ. To do this we first mollify ϕ with the
mollification parameter ν according to (39), then Theorem 6 says that our mollified problem is stable
and we have error estimates of Hölder type as indicated there. For simplicity, set

U := uε,ν , W := uε,ν
y , Ψ := ϕε,ν . (40)
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Then we have the system of first-order differential equations

Uy = W, x ∈ R, y ∈ (0, 1), (41)
a(y)Wy + b(y)W + c(y)U + Uxx = 0, x ∈ R, y ∈ (0, 1), (42)
U(x, 0) = Ψ, x ∈ R, (43)
W (x, 0) = 0, x ∈ R. (44)

We introduce the uniform grid on R× [0, 1] plane
{
xn = nh, yk = kτ

∣∣n = 0,±1,±2, . . . , k = 0, 1, . . . , N, Nτ = 1
}
.

For a function f(x, y) defined on R× [0, 1] set fk
n = f(nh, kτ).

We discretize (41)-(44) as follows

Um+1
n − Um

n

τ
= Wm+1

n , n = 0,±1, . . . , m = 0, 1, . . . , N − 1, (45)

am Wm+1
n −Wm

n

τ
+ bmWm

n + cmUm
n +

Um
n+1 − 2Um

n + Un
m−1

h2
= 0,

n = 0,±1, . . . m = 0, 1, . . . , N − 1, (46)

U0
n = Ψn, n = 0,±1, . . . (47)

W 0
n = 0, n = 0,±1, . . . (48)

This system is in fact a marching difference scheme:

U0
n = Ψn, n = 0,±1, . . . (49)

W 0
n = 0, n = 0,±1, . . . (50)

Wm+1
n = Wm

n − τ
bm

am
Wm

n − τ
cm

am
Um

n − τ

am

Um
n+1 − 2Um

n + Um
n−1

h2

n = 0, 1, . . . m = 0, 1, . . . , N − 1 (51)

Um+1
n = Um

n + τWm+1
n . (52)

Theorem 9. The difference scheme (45)–(48) approximates the problem (41)–(44) with a truncation
error which behaves like O(h2 + τ2). Furthermore, if h ≤ π/ν, then it is unconditionally stable.

Proof. The first assertion is clear. We prove only the stability of the scheme. In doing so we need the
notion of the discrete Fourier transform. Suppose that the sequence fh := {fj}∞j=0 ∈ `p, 1 < p < ∞. It
means that

‖{fj}‖`p
:=




∞∑

j=−∞
|fj |p




1/p

< ∞.

We define for fh its discrete Fourier transform as follows

∆

fh (ω) =
h√
2π

∞∑

j=−∞
fje

−iωjh, −π

h
≤ ω ≤ π

h
.

Lemma 6. (Marcinkiwicz’ theorem) Let 1 < p < ∞. Then for any f ∈ Mν,p, there are two constants
C1 and C2 such that

C1ν
1/p‖f‖p ≤ ‖{f(n

π

ν
)}‖p ≤ C2ν

1/p‖f‖p.

A proof of this lemma can be found in [2] or [12, p. 152].

Corollary. Let 1 < p < ∞ and 0 < h ≤ ν. Then for any {fj} ∈ `p, the series

∞∑

j=−∞
fjhsinc

(π

h
(x− jh)

)
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converges in the Lp-norm and converges uniformly in any compact of R to a function f ∈ Mν,p, which
is the unique solution of the interpolation problem f(jh) = fj , j ∈ Z. Here, sinc(x) = sin(x)/x for x 6= 0
and = 1 for x = 0.

Based on this result, we associate any {fj}∞j=−∞ ∈ `p with the function f ∈ Mν,p defined by the
series

f(x) :=
∞∑

j=−∞
fjhsinc

(π

h
(x− jh)

)
.

Proposition 4. Let 1 < p < ∞, h ≤ π/ν and f ∈ Mν,p. Then f̂(ω) =
∆

fh (ω), |ω| ≤ π/h.

Lemma 7. Let 1 ≤ p ≤ ∞, h ≤ π/ν and g ∈ Mν,p. Then
∥∥∥F

[
4 sin2 ξh

2
h2 ĝ(ξ)

]∥∥∥
p
≤ 5

3ν2‖g‖p.

Now we are in a position to prove the remain part of the theorem. Note that from the mollification
method either Ψ = ϕν belongs to Mν,p when p = 2, or M2ν,p for the general cases 1 < p < ∞. For
simplicity we write Ψ ∈ Mν,p for both cases.

Since Ψ ∈ Mν,p, from proposition 4 we have supp
∆

U0 (ω) ⊂ [−ν, ν]. It follows that

supp
∆

U1 (ω), supp
∆

W 1 (ω) ⊂ [−ν, ν]

and so

supp
∆

Um (ω), supp
∆

Wm (ω) ⊂ [−ν, ν], m = 0, 1, . . . , N − 1.

We associate the series
{

Um
n+1−2Um

n +Un
m−1

h2

}∞
j=−∞

with the function ∆hUm. Its discrete Fourier trans-

form is 4
( sin2 ωh

2

h2

) ∆

Um . Since supp
∆

Um ⊂ [−ν, ν], from proposition 4 and lemma 7, we have

‖{∆hUm}‖`p
≤ 5

3
C2

C1
ν1/pν2‖{Um}‖`p

. (53)

Since Ψ ∈ Mν,p, from (49)–(50) and lemma 6, we have

‖{U0
n}‖`p = ‖{Ψn}‖`p ≤ C2ν

1/p‖Ψ‖p and ‖{W 0
n}‖`p = 0.

Let |b| ≤ B, |c| ≤ C. Since supp
∆

Um ⊂ [−ν, ν], the interpolated functions Um and Wm belong to Mν,p.

Hence, from (51), (52), (53) and the inequality τ =
1
N
≤ 1, recurrently we can prove that

max{‖{Um+1}‖`p
, ‖{Wm+1}‖`p} ≤ exp

(
1 +

B + C

λ
+

5
3

C2

C1
ν2+1/pC2

)
ν1/p‖Ψ‖p.

Thus, our scheme is unconditionally stable. The theorem is proved.

Acknowledgements. The first author thanks Professors Dinh Dung and Ha Tien Ngoan for stimu-
lating discussions.
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4. Dinh Nho Hào and Pham Minh Hien, Stability results for the Cauchy problem for the Laplace
equation in a strip. Inverse Problems 19(2003), 833–844.

H03
9
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6. G. Hellwig, Über die Anwendung der Laplace-Transformation auf Randwertprobleme. Math. Zeitschr.
66(1957), 371–388.

7. G. Hellwig, Partial Differential Equations. An Introduction, B. G. Teubner Stuttgart 1977, 151–173.

8. V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.

9. C. R. Johnson, Computational and numerical methods for bioelectric field problems. Critical Re-
views in Biomedical Engineering, 25(1997), 1–81.

10. P. Knabner and S. Vessella, The optimal stability estimate for some ill-posed Cauchy problem for
a parabolic equation. Math. Methods Appl. Sci. 10(1988), 575–583.

11. M. M. Lavrent’ev, V. G. Romanov and S. P. Shishatskĭı, Ill-Posed Problems of Mathematical Physics
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