Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

A CAUCHY PROBLEM FOR AN ELLIPTIC EQUATION IN A STRIP

DINH NHO HÀO^{1,2}, PHAM MINH HIEN¹ and H. SAHLI²

¹Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, 10 307 Hanoi, Vietnam e-mail: {hao,pmhien}@math.ac.vn ² Vails University it Presed Department of Electronics and Information Presesting In

² Vrije Universiteit Brussel, Department of Electronics and Information Processing, Pleinlaan 2, 1050 Brussels, Belgium

e-mail: {hao,hsahli}@etro.vub.ac.be

Abstract: Let $p \in (1, \infty), \varphi \in L_p(\mathbb{R})$ and $\varepsilon < E$ be given nonnegative constants. In this paper we prove stability estimates of Hölder type for the Cauchy problem

$$\begin{split} & u_{xx} + a(y)u_{yy} + b(y)u_y + c(y)u = 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \\ & \|u(\cdot, 0) - \varphi\|_p \le \varepsilon, \\ & u_y(x, 0) = 0, \quad -\infty < x < \infty. \end{split}$$

subject to the constrain $||u(\cdot, 1)||_p \leq E$. Furthermore, we suggest a marching difference scheme for solving the problem in a stable way.

1. INTRODUCTION

Let $p \in (1,\infty), \varphi \in L_p(\mathbb{R})$ and ε, M be given constants such that $0 \leq \varepsilon < M < \infty$. In this paper we consider the Cauchy problem

$$u_{xx} + a(y)u_{yy} + b(y)u_y + c(y)u = 0, \quad -\infty < x < \infty, \quad 0 < y < 1,$$
(1)

$$\|u(\cdot,0) - \varphi\|_p \le \varepsilon,\tag{2}$$

$$u_u(x,0) = 0, \quad -\infty < x < \infty, \tag{3}$$

subject to the constraint

$$\|u(\cdot,1)\|_p \le E. \tag{4}$$

Here a, b, c are given functions such that for some given positive constants $\lambda \leq A$

$$\lambda \le a(y) \le A, \qquad y \in [0, 1] \tag{5}$$

$$a(y) \in C^{2}[0,1], \quad b(y) \in C^{1}[0,1], \quad c(y) \in C[0,1], \quad c(y) \le 0.$$
 (6)

Without loss of generality in the following we suppose that $\lambda \geq 1$.

We note that the problem with the non-homogeneous right-hand side in (1) and the second Cauchy data in (3) can be transformed to the above problem via an auxiliary well-posed boundary problem. When $\varepsilon = 0$ we shall prove that a solution of (1)–(3) (see Definition below) exists if and only if φ is infinitely differentiable and $\|\varphi^{(n)}\|_{L_p(\mathbb{R})} \leq cn!s^n$, $\forall n \in \mathbb{N}$ for some nonnegative constants c and s. The Cauchy problem (1)-(3) is well-known to be ill posed: a small perturbation in the Cauchy data may cause a very large error in the solution (see, e.g. [5, 8, 9, 11]). It is therefore difficult to develop numerical methods for the problem, since we always have errors of measurement in the Cauchy data, discretization errors and round-off errors; all of these make numerical solutions unstable. To overcome this difficulty we shall apply the mollification method of [3] in order to solve the problem (1)-(3) in a stable way and prove some stability estimates of Hölder type for the solution and its derivatives. The idea of the method is as follows: we mollify the Cauchy data φ by the convolution with the de la Vallée Poussin kernel (with the Dirichlet kernel for p = 2). The mollified data belong to the space of band-limited functions, in which the Cauchy problem is well-posed. And with appropriate choices of mollification parameters we obtain errors estimates of Hölder type. Further, since the Fourier transform of band-limited functions has compact support, the method can be easily implemented numerically using the fast Fourier transform (FFT) technique. Based on this remark we suggest in Section 6 a stable marching difference scheme for (1)-(3). This paper is organized as follows. In Section 2 we outline some results on the Cauchy problem in frequency space. Section 3 is devoted to stability estimates for the L_2 case and Sections 4 and 5 for the $L_p(1 cases. Finally, a stable marching difference scheme in the <math>L_p$ -norm for (1)-(3) is presented in Section 6. We separately analyze the L_2 and the general L_p cases since the techniques for them are totally different. Furthermore, the L_2 case is much easier and for which we get much more sharp estimates than for the general L_p ones. We note that stability estimates in the L_p -norm of Hölder type for ill-posed problems are not so developed. Furthermore, stable marching difference schemes in the L_p -norm are quite interesting not only for ill-posed problems but also for well-posed ones. This paper is a further development of [4] and also supplies some corrections to it.

In this paper we shall make use of the following notation: $\mathfrak{M}_{\nu,p}$ $(1 \leq p \leq \infty)$ will denote the collection of all entire functions of exponential type ν which as functions of a real $x \in \mathbb{R}$ lie in $L_p = L_p(\mathbb{R})$ ([14, p. 100]). We shall denote by $E_{\nu,p}(f)$ the best approximation of f using elements of $\mathfrak{M}_{\nu,p}$ ([14, p. 184]) $E_{\nu,p}(f) = \inf_{g \in \mathfrak{M}_{\nu,p}} ||f - g||_{L_p(\mathbb{R})}$. The norm in L_p will be denoted by $|| \cdot ||_p$. For a function $f \in L_1(\mathbb{R})$, its

Fourier transform is defined by $F[f](\xi) = \hat{f}(\xi) = 1/\sqrt{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ix\xi} dx$. The inverse Fourier transform is denoted by F^{-1} . In the paper e_{-x} are generic positive constants.

is denoted by F^{-1} . In the paper c_1, c_2, \ldots are generic positive constants.

2. AUXILIARY RESULTS

Consider the Cauchy problem in frequency space

$$-z^{2}v(z,y) + a(y)v_{yy}(z,y) + b(y)v_{y}(z,y) + c(y)v(z,y) = 0, \quad 0 < y < 1, \quad z \in \mathbb{C},$$
(7)

$$v(z, 0) = 1, \quad z \in \mathbb{C},$$
 (8)
 $v_z(z, 0) = 0, \quad z \in \mathbb{C}$ (9)

$$v_y(z,0) = 0, \quad z \in \mathbb{C}.$$
⁽⁹⁾

Since the properties of v(z, y) play an essential role in obtaining stability results for the Cauchy problem (1)-(3), we study them carefully and then derive some direct consequences.

Lemma 1. There exists a unique solution of (7)-(8) such that

- i) $v(z, \cdot) \in W^{2,\infty}(0, 1), \quad \forall z \in \mathbb{C},$
- *ii)* v(z, y) *is an entire function of* z *for every* $y \in [0, 1]$ *,*
- *iii)* $v(z,1) \neq 0$, $\forall z \neq ci, c \in \mathbb{R}, i = \sqrt{-1}$,
- iv) there exist constants c_1, c_2, c_3 and c_4 such that for $z \in \mathbb{R}$

$$|v(z,y)| \le c_1 e^{|z|A(y)}, \quad \forall y \in [0,1],$$
(10)

$$v(z,1)| \ge c_2 e^{|z|A(1)},\tag{11}$$

and if $|z| \ge z_0 > 0$, then $\forall y \in [0, 1]$,

$$|v_y(z,y)| \le c_3 |z| e^{|z|A(y)}$$
 and $|v_{yy}(z,y)| \le c_4 |z|^2 e^{|z|A(y)}$.

Here $A(y) := \int_0^y \frac{ds}{\sqrt{a(s)}}, \quad y \in [0, 1].$

We use the technique of Knabner and Vessella [10] with some modifications to prove this lemma.

Lemma 2. Let k(z, y) be the solution of the boundary value problem

$$a(y)k_{yy}(z,y) + b(y)k_y(z,y) + c(y)k(z,y) = z^2k(z,y), \quad 0 < y < 1, \quad z \in \mathbb{C},$$
(12)

$$k_y(z,0) = 0, \quad z \in \mathbb{C},\tag{13}$$

$$k(z,1) = 1, \quad z \in \mathbb{C}. \tag{14}$$

Then, there exists a constant c_5 such that

$$|k(z,y)|, |k_z(z,y)|, |k_{zz}(z,t)| \le c_5 e^{(A(y) - A(1))|z|}$$
(15)

and for any $\alpha \in (0, 1)$,

$$|z||k_z(z,y)| \le \frac{c_5}{1-\alpha} e^{\alpha(A(y)-A(1))|z|}.$$
(16)

To prove these results we use lemma 1 and [6,7].

Proposition 1. Let $p \in (1, \infty)$ and the function $\psi \in L_p(\mathbb{R})$. Consider the boundary value problem

$$u_{xx} + a(y)u_{yy} + b(y)u_y + c(y)u = 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \tag{17}$$

$$u_y(x,0) = 0, \quad -\infty < x < \infty, \tag{18}$$

$$u(x,1) = \psi(x), \quad -\infty < x < \infty.$$
(19)

Then for any fixed $y \in [0,1)$, the solution u(x,y) is analytic in the variable x and it can be analytically extended in the strip $\mathbb{R} \times i(-\sigma(y), \sigma(y))$ of the complex plane \mathbb{C} with $\sigma(y) \in (0, A(1) - A(y))$. Furthermore, there is a constant c_6 such that

$$\|u(\cdot \pm i\sigma(y), y)\|_{p} \le c_{6} \frac{A(1) - A(y)}{A(1) - A(y) - \sigma(y)} \|\psi\|_{p}.$$
(20)

The proof of this proposition is based on lemmas 1, 2 and the following result of Mikhlin [13] (see also [14, chapter 1]): Denote by $\mathbb{R}^n_* = \mathbb{R}^n \setminus \{0\}$. Let $k \in C^n(\mathbb{R}^n_*)$. If for a multi-index α there is a constant c such that

$$|\xi|^{|\alpha|}|D^{\alpha}k(\xi)| \le c, \quad \xi \in \mathbb{R}^n_*, \quad |\alpha| \le n,$$

then the mapping $\psi \mapsto F^{-1}kF\psi$ is continuous in $L_p(\mathbb{R}^n)$ and there is a constant K(n,p) such that

$$\|F^{-1}[kF\psi]\|_{L_p(\mathbb{R}^n)} \le K(n,p)c\|\psi\|_{L_p(\mathbb{R}^n)}, \quad \forall \psi \in L_p(\mathbb{R}^n).$$

Proposition 2. Let u(x,y) be defined as in Proposition 1. Then there is a constant c_7 such that

$$E_{\nu,p}(u(\cdot,y)) \le c_7 \frac{A(1) - A(y)}{A(1) - A(y) - \sigma(y)} \|\psi\|_p e^{-\sigma(y)\nu}.$$

In particular, if we take $\sigma(y) = \alpha(A(1) - A(y))$ with arbitrary $\alpha \in (0, 1)$, then

$$E_{\nu,p}(u(\cdot,y)) \le c_7 \frac{1}{1-\alpha} \|\psi\|_p e^{-\alpha(A(1)-A(y))\nu}.$$

To prove this proposition we need the following remarkable result of Bernstein (see [1,15]).

Lemma 3. For $\sigma > 0$, let f(x + iy) be analytic in the strip $\mathbb{R} \times i(-\sigma, \sigma)$ and real valued for y = 0. If there is a constant m such that $\|Re\ f(\cdot \pm i\sigma)\|_p \le m, 1 \le p \le \infty$, then we have

$$E_{\nu,p}(f(\cdot)) \le c_8 m e^{-\sigma\nu}.$$

Here, c_8 is a defined constant.

The statement of Proposition 2 follows now from this lemma and Proposition 1.

Proposition 3. Let u(x, y) be defined as in Proposition 1. Then there is a constant c_9 such that with arbitrary $\alpha \in (0, 1)$ the following inequalities hold for n = 1, 2, ...

$$E_{\nu,p}\left(\frac{\partial^n}{\partial x^n}u(\cdot,y)\right) \le c_9 \frac{(n+1)!}{(1-\alpha)^{n+1}(A(1)-A(y))^{n+1}} \|\psi\|_p e^{-\alpha(A(1)-A(y))\nu}.$$

To deal with the case $p = \infty$ we need the following result.

Lemma 4. For any $y \in [0, 1)$, the function

$$F^{-1}[k](x \pm i\sigma(y), y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} k(\xi, y) e^{i(x \pm i\sigma(y))\xi} d\xi$$

is well defined for all $\sigma(y) \in [0, A(1) - A(y))$. It is analytic with respect to the variable $z = x + i\sigma(y)$ in the strip $\mathbb{R} \times i(A(y) - A(1), A(1) - A(y))$ of the complex plane \mathbb{C} . Furthermore, $F^{-1}[k](\cdot \pm i\sigma(y), y) \in L_1(\mathbb{R})$ and

$$\|F^{-1}[k](\cdot \pm i\sigma(y))\|_{1} \le \frac{c_{9}}{A(1) - A(y) - \sigma(y)}$$
(21)

Lemma 5. Let u(x, y) be the solution of the boundary value problem (17)-(19) with $\psi \in L_{\infty}(\mathbb{R})$. Let further that $y \in [0, 1)$ and $|\sigma| < A(1) - A(y)$. Then, there is a constant c_{10} such that, for any $\alpha \in (0, 1)$,

$$E_{\nu,p}(u(\cdot,y)) \le \frac{c_{10}}{(1-\alpha)(A(1)-A(y))} e^{-\alpha(A(1)-A(y))\nu} \|\psi\|_{\infty}.$$

Using the results in this section we can prove the following results in §3-5 on stability estimates.

2. L₂-CASE 2.1. Solvability

Definition 2.1. We say that u(x, y) is an L_2 -solution of (1)-(4) if for any $y_0 \in (0, 1]$, $u(\cdot, y_0) \in L_2(\mathbb{R})$ and u satisfies (1)-(4).

When $\varepsilon = 0$, if in the problem (1)-(3), $u(\cdot, y) \in L_2(\mathbb{R})$ exists for y < 1, we say that the solution is local.

Theorem 1. If there exists an L_2 -solution of (1)-(4), then u(x,0) is infinitely differentiable and there exist some constants c and s such that

$$\|u^{(k)}(x,0)\|_{2} \le ck!s^{k}, \quad \forall k = 0, 1, 2, \dots$$
(22)

Conversely, if a function φ satisfies (22), then there exists a local L₂-solution of the system

$$\begin{aligned} u_{xx} + a(y)u_{yy} + b(y)u_y + c(y)u &= 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \\ \|u(\cdot, 0) - \varphi\|_2 &= 0, \\ u_y(x, 0) &= 0, \quad -\infty < x < \infty. \end{aligned}$$

2.2. Mollification method

To solve (1)–(4) in a stable way we mollify φ by the convolution with the Dirichlet kernel

$$\varphi \to \varphi^{\nu}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(x) \frac{\sin \nu(x-\eta)}{x-\eta} d\eta$$
 (23)

for some positive ν , and instead of considering (1)–(3) with φ we look for its mollified version

$$u_{xx}^{\nu} + a(y)u_{yy}^{\nu} + b(y)u_{y}^{\nu} + c(y)u^{\nu} = 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \tag{24}$$

$$u^{\nu}(x,0) = \varphi^{\nu}(x), \quad -\infty < x < \infty, \tag{25}$$

$$u_y^{\nu}(x,0) = 0, \qquad -\infty < x < \infty.$$
 (26)

Theorem 2. For any fixed $\nu > 0$ the problem (24)–(26) is solvable and its solution is stable

$$\left\|\frac{\partial^m u^{\nu}(\cdot, y)}{\partial x^m}\right\| \le c_1 \nu^m e^{\nu A(y)} \|\varphi\|, \quad 0 \le y \le 1, \quad m = 0, 1, 2, \dots$$
(27)

Furthermore, for ε small enough, with

$$\nu = \nu^* = \frac{1}{A(1)} \ln \frac{E}{\varepsilon} \tag{28}$$

for $y \in (0, 1)$ we have

$$\|u(\cdot, y) - u^{\nu^*}(\cdot, y)\| \le c_1 \left(1 + \frac{1}{c_2}\right) \varepsilon^{\frac{A(y)}{A(1)}} E^{1 - \frac{A(y)}{A(1)}}$$
(29)

and

$$\left\|\frac{\partial^{m} u(\cdot, y)}{\partial x^{m}} - \frac{\partial^{m} u^{\nu^{*}}(\cdot, y)}{\partial x^{m}}\right\| \leq c_{1} \left(1 + \frac{1}{c_{2}} \left(\frac{m}{A(1) - A(y)}\right)^{m}\right) \left(\frac{1}{A(1)} \ln \frac{E}{\varepsilon}\right)^{m} \varepsilon^{\frac{A(y)}{A(1)}} E^{1 - \frac{A(y)}{A(1)}}, \quad m = 1, 2, \dots$$
(30)

Here, u(x,y) is a solution of (1)-(4) and $u^{\nu^*}(x,y)$ is the solution of (24)-(26) with $\nu = \nu^*$.

H03 5

2.3. Stability estimates

From theorem 2 and the triangle inequality we immediately obtain the following result.

Theorem 3. Let $u_1(x,y), u_2(x,y)$ be any solutions of the problem (1)-(4). Then,

$$\|u_1(\cdot, y) - u_2(\cdot, y)\| \le 2c_1 \left(1 + \frac{1}{c_2}\right) \varepsilon^{\frac{A(y)}{A(1)}} E^{1 - \frac{A(y)}{A(1)}}$$
(31)

and, for m = 1, 2, ...,

$$\left\|\frac{\partial^m u_1(\cdot,y)}{\partial x^m} - \frac{\partial^m u_2(\cdot,y)}{\partial x^m}\right\| \le 2c_1 \left(1 + \frac{1}{c_2} \left(\frac{m}{A(1) - A(y)}\right)^m\right) \left(\frac{1}{A(1)} \ln \frac{E}{\varepsilon}\right)^m \varepsilon^{\frac{A(y)}{A(1)}} E^{1 - \frac{A(y)}{A(1)}}.$$
 (32)

In the case of Laplace's equation we can also obtain stability estimates for derivatives of u with respect to y.

Theorem 4. Let $u_1(x,y), u_2(x,y)$ be L_2 -solutions of the Cauchy problem for Laplace's equation

$$u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad 0 < y < 1,$$

$$\|u(\cdot, 0) - \varphi\|_2 \le \varepsilon, \quad -\infty < x < \infty,$$

$$u_y(x, 0) = 0, \quad -\infty < x < \infty,$$

with $\varphi \in L_2(\mathbb{R})$, $||u(\cdot, 1)||_2 \leq E$ and $\varepsilon \leq E$. Then for any $m = 0, 1, 2, ..., \ell = 0, 1, 2, ..., m + \ell \geq 1$, $y \in [0, 1)$, we have

$$\left\|\frac{\partial^{m+\ell}u_1(\cdot,y)}{\partial x^m \partial y^\ell} - \frac{\partial^{m+\ell}u_2(\cdot,y)}{\partial x^m \partial y^\ell}\right\| \le 2\Big(\ln\Big(e\frac{E}{\varepsilon}\Big)\Big)^{m+\ell}\Big(e^y + 2\Big(\frac{m+\ell}{1-y}\Big)^{m+\ell}\Big)\varepsilon^{1-y}E^y.$$

4. $L_p(1 CASE$

Theorem 5. For $y \in [0,1)$, a solution u(x,y) of the problem (1)–(4) is analytic with respect to the variable x. Further, for any $\alpha \in (0, 1 - y)$,

$$\left\|\frac{\partial^n u(\cdot, y)}{\partial x^n}\right\|_p \le c_2 \frac{(n+1)!}{(1-\alpha)^{n+1} (A(1) - A(y))^{n+1}} E, \quad n = 0, 1, 2, \dots$$

In particular, when y = 0, for any $\alpha \in (0, 1)$,

$$\left\|\frac{\partial^{n} u(\cdot, 0)}{\partial x^{n}}\right\|_{p} \le c_{2} \frac{(n+1)!}{(1-\alpha)^{n+1} A(1)^{n+1}} E.$$
(33)

Conversely, if $\bar{\varphi} = u(x,0)$ satisfies (33), then there is a local solution in L_p of the Cauchy problem

$$\begin{split} & u_{xx} + a(y)u_{yy} + b(y)u_y + c(y)u = 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \\ & u(x,0) = \bar{\varphi}(x), \quad -\infty < x < \infty, \\ & u_y(x,0) = 0, \quad -\infty < x < \infty. \end{split}$$

Now we return to the "generalized" Cauchy problem (1)-(4). We shall prove some stability estimates for this problem by the mollification method of [3].

Denote the de la Vallée Poussin kernel [14, p. 304] by

$$k_{\nu}(x) = \frac{1}{\pi\nu} \frac{\cos(\nu x) - \cos(2\nu x)}{\nu^2}, \quad \nu > 0.$$

This kernel belongs to $\mathfrak{M}_{2\nu,1}$ and has many nice properties. In particular, the convolution of a function $\varphi \in L_p(\mathbb{R})$ with this kernel belongs to $\mathfrak{M}_{2\nu,p}$ ([14, p. 304–306])

$$\varphi^{\nu}(x) := \int_{-\infty}^{\infty} k_{\nu}(x-z)\varphi(z)dz \in \mathfrak{M}_{2\nu,p}.$$

H03 6

Now we mollify φ by the convolution with the de la Vallée Poussin kernel and consider the mollified Cauchy problem

$$u_{xx}^{\nu} + a(y)u_{yy}^{\nu} + b(y)u_{y}^{\nu} + c(y)u^{\nu} = 0, \quad -\infty < x < \infty, \ 0 < y < 1, \tag{34}$$

$$u^{\nu}(x,0) = \varphi^{\nu}(x), \quad -\infty < x < \infty, \tag{35}$$

$$\mu_{y}^{\nu}(x,0) = 0, \quad -\infty < x < \infty.$$
 (36)

Theorem 6. There exists a unique solution of the mollified Cauchy problem (34)–(36). For any y > 0, $u^{\nu}(\cdot, y) \in \mathfrak{M}_{2\nu,p}$ and for any y finite it is stable in the L_p -norm. Further, for any $\alpha \in (0, 1)$ and $y \in [0, 1]$, with

$$\nu=\nu(y)=\frac{1}{2A(y)+\alpha(A(1)-A(y))}ln\frac{E}{\varepsilon}$$

we have

$$\|u^{\nu}(\cdot,y) - u(\cdot,y)\|_{p} \le \left(2\sqrt{3}c_{1} + (1+2\sqrt{3})\frac{c_{7}}{1-\alpha}\right) E^{\frac{2A(y)}{2A(y) + \alpha(A(1) - A(y))}} \varepsilon^{1-\frac{2A(y)}{2A(y) + \alpha(A(1) - A(y))}}.$$
 (37)

Proof. We note that $\ln \frac{E}{\varepsilon} > 0$, since $\varepsilon < E$. Therefore $\nu(y) > 0$, and so the choice for ν is acceptable. Since $\varphi^{\nu} \in \mathfrak{M}_{2\nu,p}$ and the function v(z, y) is analytic in z, the existence and uniqueness of a solution $u^{\nu}(\cdot, y) \in \mathfrak{M}_{2\nu,p}$ for any y > 0 is guaranteed by a general theory on the Cauchy problems ([16]).

From lemmas 1, 2, the Bernstein-Nikolskii inequality¹ for the functions in $\mathfrak{M}_{2\nu,p}$, and Gronwall's inequality, we get

$$\|u^{\nu}(\cdot, y)\|_{p} \le c_{1} e^{2\nu A(y)} \|\varphi^{\nu}\|_{p}.$$
(38)

Here, c_1 is the same constant as in proposition 1. Thus, u^{ν} is stable in the L_p -norm for fixed $\nu > 0$.

To estimate $||u^{\nu} - u||_p$ we use $u(x, y) = v(\cdot, y) * u(\cdot, 1)$ and set $\overline{\varphi}(x) := u(x, 0) = F^{-1}[k](\cdot, 0) * u(\cdot, 1)$. Then $\overline{\varphi} \in L_p(\mathbb{R})$ and $||\varphi - \overline{\varphi}||_p \le \varepsilon$. The Cauchy problem

$$\begin{aligned} \overline{u}_{xx}^{\nu} + a(y)\overline{u}_{yy}^{\nu} + b(y)\overline{u}_{y}^{\nu} + c(y)\overline{u}^{\nu} &= 0, \quad -\infty < x < \infty, \quad 0 < y < 1, \\ \overline{u}^{\nu}(x,0) &= \overline{\varphi}^{\nu}(x), \quad -\infty < x < \infty, \\ \overline{u}_{y}^{\nu}(x,0) &= 0, \quad -\infty < x < \infty \end{aligned}$$

with $\overline{\varphi}^{\nu}$ being the convolution of $\overline{\varphi}$ with k_{ν} has a unique solution in $\mathfrak{M}_{2\nu,p}$. In virtue of Bernstein-Nikolskii's inequality and the properties of the de la Valée Poussin kernel,

$$\left\| u^{\nu}(\cdot, y) - \overline{u}^{\nu}(\cdot, y) \right\|_{p} \le 2\sqrt{3}c_{1}e^{2A(y)\nu}\varepsilon.$$

On the other hand, we can prove that $\overline{u}^{\nu}(x,y) = k_{\nu}(\cdot) * u(\cdot,y)$. Consequently, by the property of the de la Vallée Poussin kernel and Lemma 2,

$$\|\overline{u}^{\nu}(\cdot, y) - u(\cdot, y)\|_{p} \le (1 + 2\sqrt{3}) \frac{c_{7}}{1 - \alpha} E e^{-\alpha(1 - A(y))\nu}$$

for $y \in [0, 1)$ and $\alpha \in (0, 1)$.

Finally, for $y \in [0, 1)$ and $\alpha \in (0, 1)$,

$$\begin{aligned} \|u^{\nu}(\cdot,y) - u(\cdot,y)\|_{p} &\leq \|u^{\nu}(\cdot,y) - \overline{u}^{\nu}(\cdot,y)\|_{p} + \|\overline{u}^{\nu}(\cdot,y) - u(\cdot,y)\|_{p} \\ &\leq 2\sqrt{3}c_{1}e^{2A(y)\nu}\varepsilon + (1+2\sqrt{3})\frac{c_{7}}{1-\alpha}Ee^{-\alpha(A(1)-A(y))\nu}. \end{aligned}$$

The inequality (37) for $y \in [0,1)$ now follows directly from this estimate. The case y = 1 is trivial.

The following result is an immediate corollary of the previous theorem and the triangle inequality.

¹Bernstein-Nikolskii's inequality says that if a function f belongs to $\mathfrak{M}_{\nu p}$, then $\|f^{(n)}\|_p \leq \nu^n \|f\|_p, \forall n = 1, 2, \dots$ ([14, p. 116])

H03

Theorem 7. Let u_1 and u_2 be any solutions of (1)-(4). Then, for any $\alpha \in (0,1)$ and $y \in [0,1]$,

$$\|u_1(\cdot, y) - u_2(\cdot, y)\|_p \le 2\left(2\sqrt{3}c_1 + (1 + 2\sqrt{3})\frac{c_7}{1 - \alpha}\right) E^{\frac{2A(y)}{2A(y) + \alpha(A(1) - A(y))}} \varepsilon^{1 - \frac{2A(y)}{2A(y) + \alpha(A(1) - A(y))}}$$

Remark 1. If in Theorem 6 we take ν independent of y, say

$$\nu = \nu^* = \frac{1}{2A(1)} \ln \frac{E}{\varepsilon},\tag{39}$$

then we have a slightly weaker estimate

$$\begin{aligned} \|u^{\varepsilon,\nu^*}(\cdot,y) - u(\cdot,y)\|_p &\leq 2\sqrt{3}c_1 E^{A(y)/A(1)} \cdot \varepsilon^{1-A(y)/A(1)} \\ &+ (1+2\sqrt{3})\frac{c_7}{1-\alpha} E^{1-\alpha(A(1)-A(y))/2A(1)} \varepsilon^{\alpha(A(1)-A(y))/2A(1)}. \end{aligned}$$

However, this choice is convenient for numerical implementations.

Remark 2. To have stability estimates at y = 1 we have to impose some more regularity conditions on u(x, 1) (see [4]).

Theorem 8. Let u_1 and u_2 be any solutions of (1)–(4). Then, for any $\alpha \in (0, 1), y \in [0, 1), n = 0, 1, 2, ...,$ there is a constant c_{11} such that

$$\begin{split} \left\| \frac{\partial^n}{\partial x^n} u_1(\cdot, y) - \frac{\partial^n}{\partial x^n} u_2(\cdot, y) \right\|_p &\leq c_{11} \left(\frac{1}{A(1)^n} \left(\ln \frac{E}{\varepsilon} \right)^n E^{\frac{A(y)}{A(1)}} \varepsilon^{1 - \frac{A(y)}{A(1)}} \\ &+ \frac{(n+1)!}{(1-\alpha)^{n+1} (A(1) - A(y))^{n+1}} E^{1-\alpha \frac{A(1) - A(y)}{2A(1)}} \varepsilon^{\alpha \frac{A(1) - A(y)}{2A(1)}} \right). \end{split}$$

For the Laplace equation we can get also stability estimates for the derivatives with respect to x and y.

5. L_{∞} CASE

Proceeding as in the previous section, from lemma 5, for any $\alpha \in (0, 1)$, we have

$$\|u^{\nu}(\cdot,y) - u(\cdot,y)\|_{\infty} \le c_1 e^{2\nu A(y)} + \frac{c_{10}}{(1-\alpha)(A(1) - A(x))} e^{-\alpha(A(1) - A(y))\nu} E.$$

Thus, if we choose

$$\nu = \frac{1}{\alpha A(1) + (2 - \alpha)A(y)} \ln \frac{E}{\varepsilon},$$

then

$$\|u^{\nu}(\cdot,y) - u(\cdot,y)\|_{\infty} \le \left(c_1 + \frac{c_{10}}{(1-\alpha)(A(1) - A(x))}\right) E^{\frac{2A(y)}{\alpha A(1) + (2-\alpha)A(y)}} \varepsilon^{1 - \frac{2A(y)}{\alpha A(1) + (2-\alpha)A(y)}}.$$

Hence for any solutions $u_1(x,y), u_2(x,y)$ of (1)-(4) with $p = \infty$ we have the stability estimate

$$\|u_1(\cdot, y) - u_2(\cdot, y)\|_{\infty} \le 2\left(c_1 + \frac{c_{10}}{(1 - \alpha)(A(1) - A(x))}\right) E^{\frac{2A(y)}{\alpha A(1) + (2 - \alpha)A(y)}} \varepsilon^{1 - \frac{2A(y)}{\alpha A(1) + (2 - \alpha)A(y)}}.$$

Although for any fixed $y \in [0, 1)$ this estimate is of Hölder type, it blows up when y tends to 1. Thus, the estimate in the L_{∞} -case is unfortunately local. However, remark 2 is still valid for this case.

6. STABLE MARCHING DIFFERENCE SCHEME

Since the symbol $v(\xi, y)$ is not always found exactly, it makes the mollification method sometimes not directly applicable. In this section we suggest a stable marching difference scheme based on the mollification method for the Cauchy problem (1)–(4) with noisy data φ . To do this we first mollify φ with the mollification parameter ν according to (39), then Theorem 6 says that our mollified problem is stable and we have error estimates of Hölder type as indicated there. For simplicity, set

$$U := u^{\varepsilon,\nu}, \qquad W := u^{\varepsilon,\nu}_{u}, \qquad \Psi := \varphi^{\varepsilon,\nu}. \tag{40}$$

$$U_y = W, \quad x \in \mathbb{R}, \quad y \in (0, 1), \tag{41}$$

 $a(y)W_y + b(y)W + c(y)U + U_{xx} = 0, \quad x \in \mathbb{R}, \quad y \in (0,1),$ (42)

$$U(x,0) = \Psi, \qquad x \in \mathbb{R},\tag{43}$$

$$W(x,0) = 0, \qquad x \in \mathbb{R}.$$
(44)

We introduce the uniform grid on $\mathbb{R} \times [0, 1]$ plane

$$\{x_n = nh, \quad y_k = k\tau \mid n = 0, \pm 1, \pm 2, \dots, k = 0, 1, \dots, N, N\tau = 1\}.$$

For a function f(x,y) defined on $\mathbb{R} \times [0,1]$ set $f_n^k = f(nh,k\tau)$.

We discretize (41)-(44) as follows

$$\frac{U_n^{m+1} - U_n^m}{\tau} = W_n^{m+1}, \quad n = 0, \pm 1, \dots, m = 0, 1, \dots, N - 1,$$

$$W_n^{m+1} - W_n^m = U_n^m + U_n^$$

$$a^{m} \frac{m_{n}}{\tau} + b^{m} W_{n}^{m} + c^{m} U_{n}^{m} + \frac{\sigma_{n+1}}{h^{2}} = 0,$$

$$n = 0, \pm 1, \dots, m = 0, 1, \dots, N - 1,$$
(46)

$$U_n^0 = \Psi_n, \quad n = 0, \pm 1, \dots$$
 (47)

$$W_n^0 = 0, \quad n = 0, \pm 1, \dots$$
 (48)

This system is in fact a marching difference scheme:

$$U_n^0 = \Psi_n, \quad n = 0, \pm 1, \dots$$
 (49)

$$W_n^0 = 0, \quad n = 0, \pm 1, \dots$$
 (50)

$$W_n^{m+1} = W_n^m - \tau \frac{b^m}{a^m} W_n^m - \tau \frac{c^m}{a^m} U_n^m - \frac{\tau}{a^m} \frac{U_{n+1}^m - 2U_n^m + U_{n-1}^m}{h^2}$$

$$n = 0, 1, \dots, m = 0, 1, \dots, N - 1$$
(51)

$$U_n^{m+1} = U_n^m + \tau W_n^{m+1}.$$
(52)

Theorem 9. The difference scheme (45)–(48) approximates the problem (41)–(44) with a truncation error which behaves like $O(h^2 + \tau^2)$. Furthermore, if $h \leq \pi/\nu$, then it is unconditionally stable.

Proof. The first assertion is clear. We prove only the stability of the scheme. In doing so we need the notion of the discrete Fourier transform. Suppose that the sequence $f_h := \{f_j\}_{j=0}^\infty \in \ell_p, 1 . It means that$

$$\|\{f_j\}\|_{\ell_p} := \left(\sum_{j=-\infty}^{\infty} |f_j|^p\right)^{1/p} < \infty$$

We define for f_h its discrete Fourier transform as follows

$$\overset{\Delta}{f_h}(\omega) = \frac{h}{\sqrt{2\pi}} \sum_{j=-\infty}^{\infty} f_j e^{-i\omega jh}, \quad -\frac{\pi}{h} \le \omega \le \frac{\pi}{h}.$$

Lemma 6. (Marcinkiwicz' theorem) Let $1 . Then for any <math>f \in \mathfrak{M}_{\nu,p}$, there are two constants C_1 and C_2 such that

$$C_1 \nu^{1/p} \|f\| p \le \|\{f(n\frac{\pi}{\nu})\}\|_p \le C_2 \nu^{1/p} \|f\|_p.$$

A proof of this lemma can be found in [2] or [12, p. 152].

Corollary. Let $1 and <math>0 < h \le \nu$. Then for any $\{f_j\} \in \ell_p$, the series

$$\sum_{j=-\infty}^{\infty} f_{jh} sinc\left(\frac{\pi}{h}(x-jh)\right)$$

converges in the L_p -norm and converges uniformly in any compact of \mathbb{R} to a function $f \in \mathfrak{M}_{\nu,p}$, which is the unique solution of the interpolation problem $f(jh) = f_j, j \in \mathbb{Z}$. Here, $\operatorname{sinc}(x) = \operatorname{sin}(x)/x$ for $x \neq 0$ and = 1 for x = 0.

Based on this result, we associate any $\{f_j\}_{j=-\infty}^{\infty} \in \ell_p$ with the function $f \in \mathfrak{M}_{\nu,p}$ defined by the series

$$f(x) := \sum_{j=-\infty}^{\infty} f_{jh} \operatorname{sinc}\left(\frac{\pi}{h}(x-jh)\right)$$

Proposition 4. Let $1 , <math>h \le \pi/\nu$ and $f \in \mathfrak{M}_{\nu,p}$. Then $\hat{f}(\omega) = \hat{f}_h(\omega)$, $|\omega| \le \pi/h$. Lemma 7. Let $1 \le p \le \infty$, $h \le \pi/\nu$ and $g \in \mathfrak{M}_{\nu,p}$. Then $\left\| F \left[4 \frac{\sin^2 \frac{\xi h}{2}}{h^2} \hat{g}(\xi) \right] \right\|_p \le \frac{5}{3}\nu^2 \|g\|_p$.

Now we are in a position to prove the remain part of the theorem. Note that from the mollification method either $\Psi = \varphi^{\nu}$ belongs to $\mathfrak{M}_{\nu,p}$ when p = 2, or $\mathfrak{M}_{2\nu,p}$ for the general cases $1 . For simplicity we write <math>\Psi \in \mathfrak{M}_{\nu,p}$ for both cases.

Since $\Psi \in \mathfrak{M}_{\nu,p}$, from proposition 4 we have supp $\overset{\Delta}{U^0}(\omega) \subset [-\nu,\nu]$. It follows that

$$\operatorname{supp} \overset{\Delta}{U^1}(\omega), \quad \operatorname{supp} \overset{\Delta}{W^1}(\omega) \subset [-\nu, \nu]$$

and so

supp
$$U^{\Delta}(\omega)$$
, supp $W^{M}(\omega) \subset [-\nu, \nu]$, $m = 0, 1, \dots, N-1$.

We associate the series $\left\{\frac{U_{n+1}^m - 2U_n^m + U_{m-1}^n}{h^2}\right\}_{j=-\infty}^{\infty}$ with the function $\Delta_h U^m$. Its discrete Fourier transform is $4\left(\frac{\sin^2\frac{\omega h}{2}}{h^2}\right)U^m$. Since supp $U^m \subset [-\nu,\nu]$, from proposition 4 and lemma 7, we have

$$\|\{\Delta_h U^m\}\|_{\ell_p} \le \frac{5}{3} \frac{C_2}{C_1} \nu^{1/p} \nu^2 \|\{U^m\}\|_{\ell_p}.$$
(53)

Since $\Psi \in \mathfrak{M}_{\nu,p}$, from (49)–(50) and lemma 6, we have

$$\|\{U_n^0\}\|_{\ell_p} = \|\{\Psi_n\}\|_{\ell_p} \le C_2 \nu^{1/p} \|\Psi\|_p \text{ and } \|\{W_n^0\}\|_{\ell_p} = 0.$$

Let $|b| \leq B$, $|c| \leq C$. Since supp $U^{\Delta}_{m} \subset [-\nu, \nu]$, the interpolated functions U^{m} and W^{m} belong to $\mathfrak{M}_{\nu,p}$. Hence, from (51), (52), (53) and the inequality $\tau = \frac{1}{N} \leq 1$, recurrently we can prove that

$$\max\{\|\{U^{m+1}\}\|_{\ell_p}, \|\{W^{m+1}\}\|_{\ell_p}\} \le \exp\left(1 + \frac{B+C}{\lambda} + \frac{5}{3}\frac{C_2}{C_1}\nu^{2+1/p}C_2\right)\nu^{1/p}\|\Psi\|_p.$$

Thus, our scheme is unconditionally stable. The theorem is proved.

Acknowledgements. The first author thanks Professors Dinh Dung and Ha Tien Ngoan for stimulating discussions.

REFERENCES

- 1. N. I. Achieser, Theory of Approximation. Dover Publications, Inc., New York, 1992.
- 2. Dinh Dung, The sampling theorem, L_1^T -approximation and ε -dimension. J. Approx. Theory **70**(1992), 1–15.
- 3. Dinh Nho Hào, A mollification method for ill-posed problems. Numer. Math. 68(1994), 469–506.
- 4. Dinh Nho Hào and Pham Minh Hien, Stability results for the Cauchy problem for the Laplace equation in a strip. *Inverse Problems* **19**(2003), 833–844.

- 5. Dinh Nho Hào, Tran Duc Van and R. Gorenflo, Towards the Cauchy problem for the Laplace equation. *Banach Center Publ.* **27**(1992), 111–128.
- G. Hellwig, Über die Anwendung der Laplace-Transformation auf Randwertprobleme. Math. Zeitschr. 66(1957), 371–388.
- 7. G. Hellwig, Partial Differential Equations. An Introduction, B. G. Teubner Stuttgart 1977, 151–173.
- 8. V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.
- C. R. Johnson, Computational and numerical methods for bioelectric field problems. Critical Reviews in Biomedical Engineering, 25(1997), 1–81.
- P. Knabner and S. Vessella, The optimal stability estimate for some ill-posed Cauchy problem for a parabolic equation. *Math. Methods Appl. Sci.* 10(1988), 575–583.
- M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskii, *Ill-Posed Problems of Mathematical Physics* and Analysis, Translations of Mathematical Monographs, 64, AMS, Providence, RI, 1986.
- 12. B. Ya. Levin, Lectures on Entires Functions, AMS, Rhode Island, 1996.
- S. G. Mikhlin, On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR (N. S.) 109(1956), 701–703 (in Russian).
- S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin - Heidelberg - New York, 1975.
- S. M. Nikol'skii, Uniform differential properties of an analytic function in a strip. Mathematica (Cluj) 2(25) (1960), 149–157 (in Russian).
- 16. Tran Duc Van and Dinh Nho Hào, Differential Operators of Infinite Order with Real Arguments and their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.